Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Antimicrob Chemother ; 77(Suppl_2): ii21-ii34, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2315379

ABSTRACT

Advances in medicine have led to a growing number of people with compromised or suppressed immune systems who are susceptible to invasive fungal infections. In particular, severe fungal infections are becoming increasingly common in ICUs, affecting people within and outside of traditional risk groups alike. This is exemplified by the emergence of severe viral pneumonia as a significant risk factor for invasive pulmonary aspergillosis, and the recognition of influenza-associated pulmonary aspergillosis and, more recently, COVID-19-associated pulmonary aspergillosis. The treatment landscape for haematological malignancies has changed considerably in recent years, and some recently introduced targeted agents, such as ibrutinib, are increasing the risk of invasive fungal infections. Consideration must also be given to the risk of drug-drug interactions between mould-active azoles and small-molecule kinase inhibitors. At the same time, infections caused by rare moulds and yeasts are increasing, and diagnosis continues to be challenging. There is growing concern about azole resistance among both moulds and yeasts, mandating continuous surveillance and personalized treatment strategies. It is anticipated that the epidemiology of fungal infections will continue to change and that new populations will be at risk. Early diagnosis and appropriate treatment remain the most important predictors of survival, and broad-spectrum antifungal agents will become increasingly important. Liposomal amphotericin B will remain an essential therapeutic agent in the armamentarium needed to manage future challenges, given its broad antifungal spectrum, low level of acquired resistance and limited potential for drug-drug interactions.


Subject(s)
COVID-19 Drug Treatment , Invasive Fungal Infections , Mycoses , Pulmonary Aspergillosis , Humans , Mycoses/drug therapy , Mycoses/epidemiology , Mycoses/diagnosis , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/epidemiology , Azoles/therapeutic use , Fungi , Pulmonary Aspergillosis/drug therapy
2.
Infect Dis Poverty ; 12(1): 20, 2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2288823

ABSTRACT

BACKGROUND: Emerging fungal pathogens pose important threats to global public health. The World Health Organization has responded to the rising threat of traditionally neglected fungal infections by developing a Fungal Priority Pathogens List (FPPL). Taking the highest-ranked fungal pathogen in the FPPL, Cryptococcus neoformans, as a paradigm, we review progress made over the past two decades on its global burden, its clinical manifestation and management of cryptococcal infection, and its antifungal resistance. The purpose of this review is to drive research efforts to improve future diagnoses, therapies, and interventions associated with fungal infections. METHODS: We first reviewed trends in the global burden of HIV-associated cryptococcal infection, mainly based on a series of systematic studies. We next conducted scoping reviews in accordance with the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews using PubMed and ScienceDirect with the keyword Cryptococcus neoformans to identify case reports of cryptococcal infections published since 2000. We then reviewed recent updates on the diagnosis and antifungal treatment of cryptococcal infections. Finally, we summarized knowledge regarding the resistance and tolerance of C. neoformans to approved antifungal drugs. RESULTS: There has been a general reduction in the estimated global burden of HIV-associated cryptococcal meningitis since 2009, probably due to improvements in highly active antiretroviral therapies. However, cryptococcal meningitis still accounts for 19% of AIDS-related deaths annually. The incidences of CM in Europe and North America and the Latin America region have increased by approximately two-fold since 2009, while other regions showed either reduced or stable numbers of cases. Unfortunately, diagnostic and treatment options for cryptococcal infections are limited, and emerging antifungal resistance exacerbates the public health burden. CONCLUSION: The rising threat of C. neoformans is compounded by accumulating evidence for its ability to infect immunocompetent individuals and the emergence of antifungal-resistant variants. Emphasis should be placed on further understanding the mechanisms of pathogenicity and of antifungal resistance and tolerance. The development of novel management strategies through the identification of new drug targets and the discovery and optimization of new and existing diagnostics and therapeutics are key to reducing the health burden.


Subject(s)
Cryptococcus neoformans , HIV Infections , Meningitis, Cryptococcal , Mycoses , Humans , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/epidemiology , Meningitis, Cryptococcal/complications , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , HIV Infections/drug therapy , Mycoses/complications , Mycoses/drug therapy
3.
J Med Case Rep ; 17(1): 48, 2023 Feb 08.
Article in English | MEDLINE | ID: covidwho-2280837

ABSTRACT

BACKGROUND: Pulmonary mycosis is a fungal infection of the lung. Antifungal treatments are used in conventional treatments; however, incomplete response and toxicity are major challenges of antifungal therapies. In Ayurveda, pulmonary mycosis is diagnosed and treated based on principles of respiratory disorders (referred to as Shvaas Roga) with promising outcomes. CASE PRESENTATION: A > 60-year-old South Indian male patient visited Institute of Ayurveda and Integrative Medicine with complaints of cough, breathlessness, pedal edema, weight loss, uncontrolled diabetes, and anemia. Following chest X-ray, high-resolution computed tomography (HRCT) and bronchoscopy, the patient was diagnosed with a case of pulmonary mucormycosis. The patient had availed conventional allopathic treatment for 3 months including standard antifungal medication for 3 weeks. However, due to unresolved and persistent symptoms, the patient sought Ayurveda treatment. The patient was diagnosed and treated for 6 weeks as a case of Shvaasa Roga, a subcategory of the respiratory disorder according to Ayurveda, and was cured of the infection following an integrative Ayurveda management regime which included internal medicines, panchakarma, necessary poorvakarmas (like abhyanga and swedhana), diet and lifestyle advice, yoga and acupuncture. CONCLUSIONS: The patient was cured of fungal lung infection in 6 weeks using an integrative approach. Primary Ayurveda treatment supported with diet and lifestyle modifications, yoga, and acupuncture helped the patient to recover from illness. The patient is alive and free of disease for more than one year to date.


Subject(s)
Diabetes Mellitus , Mycoses , Humans , Male , Middle Aged , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Lung/diagnostic imaging , Diet , Diabetes Mellitus/drug therapy
4.
Microbes Infect ; 24(8): 105039, 2022.
Article in English | MEDLINE | ID: covidwho-2272233

ABSTRACT

Fungal infections remain hardly treatable because of unstandardized diagnostic tests, limited antifungal armamentarium, and more specifically, potential toxic interactions between antifungals and immunosuppressants used during anti-inflammatory therapies, such as those set up in critically ill COVID-19 patients. Taking into account pre-existing difficulties in treating vulnerable COVID-19 patients, any co-occurrence of infectious diseases like fungal infections constitutes a double debacle for patients, healthcare experts, and the public economy. Since the first appearance of SARS-CoV-2, a significant rise in threatening fungal co-infections in COVID-19 patients has been testified in the scientific literature. Better management of fungal infections in COVID-19 patients is, therefore, a priority and requires highlighting common risk factors, relationships with immunosuppression, as well as challenges in fungal diagnosis and treatment. The present review attempts to highlight these aspects in the three most identified causative agents of fungal co-infections in COVID-19 patients: Aspergillus, Candida, and Mucorales species.


Subject(s)
COVID-19 , Coinfection , Mycoses , Humans , COVID-19/complications , Coinfection/epidemiology , SARS-CoV-2 , Mycoses/drug therapy , Mycoses/epidemiology , Candida , Antifungal Agents/therapeutic use
5.
J Microbiol Immunol Infect ; 56(2): 207-235, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2246412

ABSTRACT

Coronavirus disease-19 (COVID-19) is an emerging infectious disease caused by SARS-CoV-2 that has rapidly evolved into a pandemic to cause over 600 million infections and more than 6.6 million deaths up to Nov 25, 2022. COVID-19 carries a high mortality rate in severe cases. Co-infections and secondary infections with other micro-organisms, such as bacterial and fungus, further increases the mortality and complicates the diagnosis and management of COVID-19. The current guideline provides guidance to physicians for the management and treatment of patients with COVID-19 associated bacterial and fungal infections, including COVID-19 associated bacterial infections (CABI), pulmonary aspergillosis (CAPA), candidiasis (CAC) and mucormycosis (CAM). Recommendations were drafted by the 7th Guidelines Recommendations for Evidence-based Antimicrobial agents use Taiwan (GREAT) working group after review of the current evidence, using the grading of recommendations assessment, development, and evaluation (GRADE) methodology. A nationwide expert panel reviewed the recommendations in March 2022, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes the epidemiology, diagnostic methods and treatment recommendations for COVID-19 associated infections. The aim of this guideline is to provide guidance to physicians who are involved in the medical care for patients with COVID-19 during the ongoing COVID-19 pandemic.


Subject(s)
COVID-19 , Mycoses , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Taiwan/epidemiology , Pandemics , Mycoses/diagnosis , Mycoses/drug therapy , COVID-19 Testing
7.
Antimicrob Agents Chemother ; 67(2): e0068622, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2213877

ABSTRACT

Procedures such as solid-organ transplants and cancer treatments can leave many patients in an immunocompromised state. This leads to their increased susceptibility to opportunistic diseases such as fungal infections. Mucormycosis infections are continually emerging and pose a serious threat to immunocompromised patients. Recently there has been a sharp increase in mucormycosis cases as a secondary infection in patients battling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Mucorales fungi are notorious for presenting resistance to most antifungal drugs. The absence of effective means to treat these infections results in mortality rates approaching 100% in cases of disseminated infection. One of the most effective antifungal drug classes currently available is the echinocandins. Echinocandins seem to be efficacious in the treatment of many other fungal infections. Unfortunately, susceptibility testing has found that echinocandins have little to no effect on Mucorales fungi. In this study, we found that the model Mucorales Mucor circinelloides genome carries three copies of the genes encoding the echinocandin target protein ß-(1,3)-d-glucan synthase (fksA, fksB, and fksC). Interestingly, we found that exposing M. circinelloides to micafungin significantly increased the expression of the fksA and fksB genes, resulting in an increased accumulation of ß-(1,3)-d-glucan on the cell walls. However, this overexpression of the fks genes is not directly connected to the intrinsic resistance. Subsequent investigation discovered that the serine/threonine phosphatase calcineurin regulates the expression of fksA and fksB, and the deletion of calcineurin results in a decrease in expression of all three fks genes. Deletion of calcineurin also results in a lower minimum effective concentration (MEC) of micafungin. In addition, we found that duplication of the fks gene is also responsible for the intrinsic resistance, in which lack of either fksA or fksB led a lower MEC of micafungin. Together, these findings demonstrate that calcineurin and fks gene duplication contribute to the intrinsic resistance to micafungin we observe in M. circinelloides.


Subject(s)
COVID-19 , Mucormycosis , Mycoses , Humans , Micafungin/pharmacology , Micafungin/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mucormycosis/drug therapy , Mucormycosis/microbiology , Calcineurin/genetics , Calcineurin/pharmacology , SARS-CoV-2 , Mucor/genetics , Echinocandins/pharmacology , Echinocandins/therapeutic use , Mycoses/drug therapy , Serine , Drug Resistance, Fungal/genetics
8.
Curr Opin Pulm Med ; 28(3): 218-224, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-2190986

ABSTRACT

PURPOSE OF REVIEW: We aim to examine the most recent findings in the area of invasive pulmonary fungal infections to determine the appropriate/and or lack of prevention measures and treatment of upper fungal respiratory tract infections in the critically ill. RECENT FINDINGS: This will be addressed by focusing on the pathogens and prognosis over different bedridden periods in ICU patients, the occurrence of invasive fungal respiratory superinfections in patients with severe coronavirus disease 2019 which has been recently noted following the SARS-CoV-2 pandemic. Relevant reports referenced within include randomized controlled trials, meta-analyses, observational studies, systematic reviews, and international guidelines, where applicable. Of note, it is clear there is a significant gap in our knowledge regarding whether bacterial and fungal infections in coronavirus disease 2019 are directly attributable to SARS-CoV-2 or a consequence of factors such as managing high numbers of critically unwell patients, and the prolonged duration of mechanical ventilation/ICU admission duration of stay. SUMMARY: An optimal diagnostic algorithm incorporating fungal biomarkers and molecular tools for early and accurate diagnosis of Pneumocystis pneumonia, invasive aspergillosis, candidemia, and endemic mycoses continues to be limited clinically. There is a lack of standardized molecular approach to identify fungal pathogens directly in formalin-fixed paraffin-embedded tissues and suboptimal diagnostic approaches for mould blood cultures, tissue culture processing for Mucorales, and fungal respiratory cultures (i.e., the routine use of bronchoscopic examination in ICU patients with influenza-associated pulmonary aspergillosis) for fungal point-of-care testing to detect and identify new, emerging or underrecognized, rare, or uncommon fungal pathogens.


Subject(s)
COVID-19 , Mycoses , Respiratory Tract Infections , Critical Illness , Humans , Mycoses/diagnosis , Mycoses/drug therapy , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/therapy , SARS-CoV-2
9.
Eur J Med Chem ; 246: 115010, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2149666

ABSTRACT

Mucormycosis is a fungal infection which got worsens with time if not diagnosed and treated. The current COVID-19 pandemic has association with fungal infection specifically with mucormycosis. Already immunocompromised patients are easy target for COVID-19 and mucormycosis as well. COVID-19 infection imparts in weak immune system so chances of infection is comparatively high in COVID-19 patients. Furthermore, diabetes, corticosteroid medicines, and a weakened immune system are the most prevalent risk factors for this infection as we discussed in case studies here. The steroid therapy for COVID-19 patients sometimes have negative impact on the patient health and this state encounters many infections including mucormycosis. There are treatments available but less promising and less effective. So, researchers are focusing on the promising agents against mucormycosis. It is reported that early treatment with liposomal amphotericin B (AmB), manogepix, echinocandins isavuconazole, posacanazole and other promising therapeutic agents have overcome the burden of mucormycosis. Lipid formulations of AmB have become the standard treatment for mucormycosis due to their greater safety and efficacy. In this review article, we have discussed case studies with the infection of mucormycosis in COVID-19 patients. Furthermore, we focused on anti-mucormycosis agents with mechanism of action of various therapeutics, including coverage of new antifungal agents being investigated as part of the urgent global response to control and combat this lethal infection, especially those with established risk factors.


Subject(s)
COVID-19 , Mucormycosis , Mycoses , Humans , Pandemics , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Mucormycosis/diagnosis , Mucormycosis/drug therapy , Mucormycosis/microbiology
10.
Antimicrob Agents Chemother ; 66(10): e0068122, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2053110

ABSTRACT

Platelets are currently thought to harbor antimicrobial functions and might therefore play a crucial role in infections, e.g., those caused by Aspergillus or mucormycetes. The incidence of invasive fungal infections is increasing, particularly during the coronavirus disease 2019 (COVID-19) pandemic, and such infections continue to be life-threatening in immunocompromised patients. For this reason, the interaction of antimycotics with platelets is a key issue to evaluate modern therapeutic regimens. Amphotericin B (AmB) is widely used for the therapy of invasive fungal infections either as deoxycholate (AmB-D) or as a liposomal formulation (L-AmB). We showed that AmB strongly activates platelets within a few minutes. AmB concentrations commonly measured in the blood of patients were sufficient to stimulate platelets, indicating that this effect is highly relevant in vivo. The stimulating effect was corroborated by a broad spectrum of platelet activation parameters, including degranulation, aggregation, budding of microparticles, morphological changes, and enhanced adherence to fungal hyphae. Comparison between the deoxycholate and the liposomal formulation excluded the possibility that the liposomal part of L-Amb is responsible for these effects, as no difference was visible. The induction of platelet activation and alteration by L-AmB resulted in the activation of other parts of innate immunity, such as stimulation of the complement cascade and interaction with granulocytes. These mechanisms might substantially fuel the antifungal immune reaction in invasive mycoses. On the other hand, thrombosis and excessive inflammatory processes might occur via these mechanisms. Furthermore, the viability of L-AmB-activated platelets was consequently decreased, a process that might contribute to thrombocytopenia in patients.


Subject(s)
COVID-19 , Invasive Fungal Infections , Mycoses , Humans , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Fibrinolytic Agents , Aspergillus , Invasive Fungal Infections/drug therapy , Liposomes/therapeutic use , Deoxycholic Acid/pharmacology , Deoxycholic Acid/therapeutic use
11.
Nat Commun ; 13(1): 5352, 2022 09 12.
Article in English | MEDLINE | ID: covidwho-2016691

ABSTRACT

Prior to the SARS-CoV-2 pandemic, antibiotic resistance was listed as the major global health care priority. Some analyses, including the O'Neill report, have predicted that deaths due to drug-resistant bacterial infections may eclipse the total number of cancer deaths by 2050. Although fungal infections remain in the shadow of public awareness, total attributable annual deaths are similar to, or exceeds, global mortalities due to malaria, tuberculosis or HIV. The impact of fungal infections has been exacerbated by the steady rise of antifungal drug resistant strains and species which reflects the widespread use of antifungals for prophylaxis and therapy, and in the case of azole resistance in Aspergillus, has been linked to the widespread agricultural use of antifungals. This review, based on a workshop hosted by the Medical Research Council and the University of Exeter, illuminates the problem of antifungal resistance and suggests how this growing threat might be mitigated.


Subject(s)
COVID-19 Drug Treatment , Mycoses , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Resistance, Bacterial , Humans , Mycology , Mycoses/drug therapy , Mycoses/microbiology , SARS-CoV-2
12.
PLoS One ; 17(7): e0271795, 2022.
Article in English | MEDLINE | ID: covidwho-1963035

ABSTRACT

OBJECTIVES: The prevalence of fungal secondary infections among COVID-19 patients and efficacy of antifungal therapy used in such patients is still unknown. Hence, we conducted this study to find the prevalence of fungal secondary infections among COVID-19 patients and patient outcomes in terms of recovery or all-cause mortality following antifungal therapy (AFT) in such patients. METHODS: We performed a comprehensive literature search in PubMed®, Scopus®, Web of Sciences™, The Cochrane Library, ClinicalTrial.gov, MedRxiv.org, bioRxiv.org, and Google scholar to identify the literature that used antifungal therapy for the management fungal secondary infections in COVID-19 patients. We included case reports, case series, prospective & retrospective studies, and clinical trials. Mantel Haenszel random-effect model was used for estimating pooled risk ratio for required outcomes. RESULTS: A total of 33 case reports, 3 case series, and 21 cohort studies were selected for final data extraction and analysis. The prevalence of fungal secondary infections among COVID-19 patients was 28.2%. Azoles were the most commonly (65.1%) prescribed AFT. Study shows that high survival frequency among patients using AFT, received combination AFT and AFT used for >28 days. The meta-analysis showed, no significant difference in all-cause mortality between patients who received AFT and without AFT (p = 0.17), between types of AFT (p = 0.85) and the duration of AFT (p = 0.67). CONCLUSION: The prevalence of fungal secondary infections among COVID-19 patients was 28.2%. The survival frequency was high among patients who used AFT for fungal secondary infections, received combination AFT and AFT used for >28 days. However, meta-analysis results found that all-cause mortality in COVID-19 patients with fungal secondary infections is not significantly associated with type and duration of AFT, mostly due to presence of confounding factors such as small number of events, delay in diagnosis of fungal secondary infections, presence of other co-infections and multiple comorbidities.


Subject(s)
COVID-19 , Coinfection , Mycoses , Antifungal Agents/therapeutic use , COVID-19/epidemiology , Coinfection/drug therapy , Fluconazole/therapeutic use , Humans , Mycoses/complications , Mycoses/drug therapy , Mycoses/epidemiology , Prospective Studies , Retrospective Studies
13.
Int J Mol Sci ; 23(12)2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1917509

ABSTRACT

Fungal infections of the lung are an increasing problem worldwide and the search for novel therapeutic agents is a current challenge due to emerging resistance to current antimycotics. The volatile defence substance allicin is formed naturally by freshly injured garlic plants and exhibits broad antimicrobial potency. Chemically synthesised allicin was active against selected fungi upon direct contact and via the gas phase at comparable concentrations to the pharmaceutically used antimycotic amphotericin B. We investigated the suppression of fungal growth by allicin vapour and aerosols in vitro in a test rig at air flow conditions mimicking the human lung. The effect of allicin via the gas phase was enhanced by ethanol. Our results suggest that allicin is a potential candidate for development for use in antifungal therapy for lung and upper respiratory tract infections.


Subject(s)
Mycoses , Sulfinic Acids , Disulfides , Humans , Lung , Mycoses/drug therapy , Sulfinic Acids/chemistry , Sulfinic Acids/pharmacology , Sulfinic Acids/therapeutic use
14.
Rev Iberoam Micol ; 39(2): 54-56, 2022.
Article in English | MEDLINE | ID: covidwho-1886067

ABSTRACT

BACKGROUND: Trichosporon asahii, an emerging fungal pathogen, has been frequently associated with invasive infections in critically ill patients. CASE REPORT: A 74-year-old male patient diagnosed with COVID-19 was admitted to an Intensive Care Unit (ICU). During hospitalization, the patient displayed episodes of bacteremia by Staphylococcus haemolyticus and a possible urinary tract infection by T. asahii. While the bacterial infection was successfully treated using broad-spectrum antibiotics, the fungal infection in the urinary tract was unsuccessfully treated with anidulafungin and persisted until the patient died. CONCLUSIONS: With the evolving COVID-19 pandemic, invasive fungal infections have been increasingly reported, mainly after taking immunosuppressant drugs associated with long-term broad-spectrum antibiotic therapy. Although Candida and Aspergillus are still the most prevalent invasive fungi, T. asahii and other agents have emerged in critically ill patients. Therefore, a proper surveillance and diagnosing any fungal infection are paramount, particularly in COVID-19 immunocompromised populations.


Subject(s)
COVID-19 , Mycoses , Trichosporon , Trichosporonosis , Urinary Tract Infections , Aged , Antifungal Agents/therapeutic use , Basidiomycota , Critical Illness , Humans , Male , Mycoses/drug therapy , Mycoses/microbiology , Pandemics , Trichosporonosis/diagnosis , Trichosporonosis/drug therapy , Trichosporonosis/microbiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
15.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1875643

ABSTRACT

Invasive aspergillosis (IA) is a life-threatening fungal disease that causes high morbidity and mortality in immunosuppressed patients. Early and accurate diagnosis and treatment of IA remain challenging. Given the broad range of non-specific clinical symptoms and the shortcomings of current diagnostic techniques, most patients are either diagnosed as "possible" or "probable" cases but not "proven". Moreover, because of the lack of sensitive and specific tests, many high-risk patients receive an empirical therapy or a prolonged treatment of high-priced antifungal agents, leading to unnecessary adverse effects and a high risk of drug resistance. More precise diagnostic techniques alongside a targeted antifungal treatment are fundamental requirements for reducing the morbidity and mortality of IA. Monoclonal antibodies (mAbs) with high specificity in targeting the corresponding antigen(s) may have the potential to improve diagnostic tests and form the basis for novel IA treatments. This review summarizes the up-to-date application of mAb-based approaches in assisting IA diagnosis and therapy.


Subject(s)
Antineoplastic Agents, Immunological , Aspergillosis , Invasive Fungal Infections , Mycoses , Antibodies, Monoclonal/therapeutic use , Antifungal Agents/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Aspergillosis/diagnosis , Aspergillosis/drug therapy , Humans , Invasive Fungal Infections/drug therapy , Mycoses/drug therapy
16.
Virol J ; 19(1): 35, 2022 03 04.
Article in English | MEDLINE | ID: covidwho-1785160

ABSTRACT

BACKGROUND: SARS-CoV-2, a novel corona virus, has caused clusters of fatal pneumonia worldwide. Immune compromised patients are among the high risk groups with poor prognosis of the disease. The presence of bacterial or fungal co-infections with SARS-CoV-2 is associated with increased mortality. METHODS: The electronic data of the liver and kidney recipients, hospitalized in COVID-19 intensive care unit in an 8-month period in 2020 were retrospectively assessed. The documented bacterial or fungal infections alongside with outcome and risk factors were recorded and analyzed by binary logistic regression model and multivariate analyses. RESULTS: Sixty-Six liver and kidney recipients with positive RT-PCR for SARS-CoV-2 were included this study. Twenty one percent of the patients had at least one episode of co-infection during their COVID-19 course. Bacterial and fungal co-infections contributed to a significantly higher mortality. Urine and sputum were the most common sites of pathogen isolation (45.45% and 36.36%; respectively). The majority of infections were caused by vancomycin- resistant Enterococci (30%). Escherichia coli stood in the next position with 23.3%. Prior hospitalization and high doses of corticosteroids were associated with co-infections (p < 0.001 and p = 0.02; respectively.) CONCLUSIONS: Bacterial and fungal co-infections with COVID-19 are more prevalent in solid organ recipients compared to the general population. Prior hospitalizations and use of broad-spectrum antimicrobial agents lead to emergence of multi-drug resistant pathogens in this susceptible patient population. Early detection and treatment of co-infections as well as antibiotic stewardship is recommended in solid organ recipients.


Subject(s)
COVID-19 , Coinfection , Mycoses , COVID-19/epidemiology , Coinfection/drug therapy , Humans , Mycoses/drug therapy , Mycoses/epidemiology , Mycoses/microbiology , Retrospective Studies , SARS-CoV-2 , Transplant Recipients
17.
Antimicrob Resist Infect Control ; 11(1): 45, 2022 03 07.
Article in English | MEDLINE | ID: covidwho-1731546

ABSTRACT

BACKGROUND: Pneumonia from SARS-CoV-2 is difficult to distinguish from other viral and bacterial etiologies. Broad-spectrum antimicrobials are frequently prescribed to patients hospitalized with COVID-19 which potentially acts as a catalyst for the development of antimicrobial resistance (AMR). OBJECTIVES: We conducted a systematic review and meta-analysis during the first 18 months of the pandemic to quantify the prevalence and types of resistant co-infecting organisms in patients with COVID-19 and explore differences across hospital and geographic settings. METHODS: We searched MEDLINE, Embase, Web of Science (BioSIS), and Scopus from November 1, 2019 to May 28, 2021 to identify relevant articles pertaining to resistant co-infections in patients with laboratory confirmed SARS-CoV-2. Patient- and study-level analyses were conducted. We calculated pooled prevalence estimates of co-infection with resistant bacterial or fungal organisms using random effects models. Stratified meta-analysis by hospital and geographic setting was also performed to elucidate any differences. RESULTS: Of 1331 articles identified, 38 met inclusion criteria. A total of 1959 unique isolates were identified with 29% (569) resistant organisms identified. Co-infection with resistant bacterial or fungal organisms ranged from 0.2 to 100% among included studies. Pooled prevalence of co-infection with resistant bacterial and fungal organisms was 24% (95% CI 8-40%; n = 25 studies: I2 = 99%) and 0.3% (95% CI 0.1-0.6%; n = 8 studies: I2 = 78%), respectively. Among multi-drug resistant organisms, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and multi-drug resistant Candida auris were most commonly reported. Stratified analyses found higher proportions of AMR outside of Europe and in ICU settings, though these results were not statistically significant. Patient-level analysis demonstrated > 50% (n = 58) mortality, whereby all but 6 patients were infected with a resistant organism. CONCLUSIONS: During the first 18 months of the pandemic, AMR prevalence was high in COVID-19 patients and varied by hospital and geography although there was substantial heterogeneity. Given the variation in patient populations within these studies, clinical settings, practice patterns, and definitions of AMR, further research is warranted to quantify AMR in COVID-19 patients to improve surveillance programs, infection prevention and control practices and antimicrobial stewardship programs globally.


Subject(s)
Bacteria/drug effects , Bacterial Infections/drug therapy , COVID-19/complications , Drug Resistance, Bacterial , Drug Resistance, Fungal , Mycoses/drug therapy , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/etiology , Bacterial Infections/microbiology , COVID-19/virology , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/isolation & purification , Humans , Mycoses/etiology , Mycoses/microbiology , SARS-CoV-2/physiology
18.
Clin Chem ; 68(1): 83-90, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1599228

ABSTRACT

BACKGROUND: Infections caused by fungi can be important causes of morbidity and mortality in certain patient populations, including those who are highly immunocompromised or critically ill. Invasive mycoses can be caused by well-known species, as well as emerging pathogens, including those that are resistant to clinically available antifungals. CONTENT: This review highlights emerging fungal infections, including newly described species, such as Candida auris, and those that having undergone taxonomic classification and were previously known by other names, including Blastomyces and Emergomyces species, members of the Rasamsonia argillacea species complex, Sporothrix brasiliensis, and Trichophyton indotinae. Antifungal resistance also is highlighted in several of these emerging species, as well as in the well-known opportunistic pathogen Aspergillus fumigatus. Finally, the increased recognition and importance of fungal co-infections with respiratory pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is discussed. SUMMARY: Both clinicians and clinical microbiology laboratories should remain vigilant regarding emerging fungal infections. These may be difficult both to diagnose and treat due to the lack of experience of clinicians and laboratory personnel with these organisms and the infections they may cause. Many of these fungal infections have been associated with poor clinical outcomes, either due to inappropriate therapy or the development of antifungal resistance.


Subject(s)
Antifungal Agents , Communicable Diseases, Emerging/epidemiology , Drug Resistance, Fungal , Mycoses , Antifungal Agents/pharmacology , COVID-19 , Communicable Diseases, Emerging/microbiology , Fungi/drug effects , Fungi/pathogenicity , Humans , Mycoses/drug therapy , Mycoses/epidemiology
19.
Rev Esp Quimioter ; 34 Suppl 1: 72-75, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1449590

ABSTRACT

Invasive fungal infection often complicates patients with severe viral infection, especially those admitted to critical care units. Severe SARS-CoV-2 infection has been no exception and a significant association with Aspergillus spp. has been documented, resulting in high patient mortality. In this summary we describe the clinical presentation, the underlying diseases most commonly linked with this association, radiological manifestations and therapeutic management of CAPA.


Subject(s)
COVID-19 , Mycoses , Aspergillus , Humans , Intensive Care Units , Mycoses/drug therapy , SARS-CoV-2
20.
Small Methods ; 5(11): e2100713, 2021 11.
Article in English | MEDLINE | ID: covidwho-1437086

ABSTRACT

The past year has established the link between the COVID-19 pandemic and the global spread of severe fungal infections; thus, underscoring the critical need for rapid and realizable fungal disease diagnostics. While in recent years, health authorities, such as the Centers for Disease Control and Prevention, have reported the alarming emergence and spread of drug-resistant pathogenic fungi and warned against the devastating consequences, progress in the diagnosis and treatment of fungal infections is limited. Early diagnosis and patient-tailored therapy are established to be key in reducing morbidity and mortality associated with fungal (and cofungal) infections. As such, antifungal susceptibility testing (AFST) is crucial in revealing susceptibility or resistance of these pathogens and initiating correct antifungal therapy. Today, gold standard AFST methods require several days for completion, and thus this much delayed time for answer limits their clinical application. This review focuses on the advancements made in developing novel AFST techniques and discusses their implications in the context of the practiced clinical workflow. The aim of this work is to highlight the advantages and drawbacks of currently available methods and identify the main gaps hindering their progress toward clinical application.


Subject(s)
Antifungal Agents/therapeutic use , COVID-19/epidemiology , Mycoses/diagnosis , Mycoses/drug therapy , COVID-19/virology , Diagnostic Tests, Routine , Drug Resistance, Fungal , Humans , Microbial Sensitivity Tests , Mycoses/epidemiology , Mycoses/microbiology , Pandemics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL